library(rvfl)
glmGamma <- function(formula, ...) {
  e1071::svm(formula = formula, ...)
}

Example 1: MPG Prediction (mtcars dataset)

Load and prepare data

data(mtcars)

set.seed(1243)
train_idx <- sample(nrow(mtcars), size = floor(0.8 * nrow(mtcars)))
train_data <- mtcars[train_idx, ]
test_data <- mtcars[-train_idx, -1]

Fit models

# Fit regular linear model
start <- proc.time()[3]
lm_model <- lm(mpg ~ ., data = train_data)
print(proc.time()[3] - start)
## elapsed 
##   0.011
print(summary(lm_model))
## 
## Call:
## lm(formula = mpg ~ ., data = train_data)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.5211 -0.9792 -0.0324  1.1808  4.9814 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)  
## (Intercept) -5.054416  25.456900  -0.199   0.8455  
## cyl          0.695392   1.396506   0.498   0.6262  
## disp         0.005254   0.017342   0.303   0.7664  
## hp          -0.007610   0.027723  -0.274   0.7877  
## drat         4.128157   2.724353   1.515   0.1520  
## wt          -1.621396   2.139071  -0.758   0.4610  
## qsec         0.064356   0.932144   0.069   0.9459  
## vs           0.138716   3.421183   0.041   0.9682  
## am          -0.498476   2.956568  -0.169   0.8685  
## gear         4.402648   2.287816   1.924   0.0749 .
## carb        -1.999389   1.299580  -1.538   0.1462  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.464 on 14 degrees of freedom
## Multiple R-squared:  0.8938, Adjusted R-squared:  0.818 
## F-statistic: 11.79 on 10 and 14 DF,  p-value: 3.4e-05
print(confint(lm_model))
##                    2.5 %      97.5 %
## (Intercept) -59.65403559 49.54520296
## cyl          -2.29981561  3.69060001
## disp         -0.03194096  0.04244882
## hp           -0.06707095  0.05185084
## drat         -1.71500030  9.97131342
## wt           -6.20924769  2.96645550
## qsec         -1.93489537  2.06360651
## vs           -7.19899241  7.47642359
## am           -6.83968216  5.84273112
## gear         -0.50422869  9.30952400
## carb         -4.78671119  0.78793282
# Fit calibrated model 
start <- proc.time()[3]
svm_model <- rvfl::calibmodel(lambda=10**seq(-10, 10, length.out=100), x = as.matrix(train_data[,-1]), y = train_data$mpg, engine = glmGamma)
print(proc.time()[3] - start)
## elapsed 
##    0.18
print(summary(svm_model$model))
## 
## Call:
## svm(formula = formula, data = ..1)
## 
## 
## Parameters:
##    SVM-Type:  eps-regression 
##  SVM-Kernel:  radial 
##        cost:  1 
##       gamma:  0.1 
##     epsilon:  0.1 
## 
## 
## Number of Support Vectors:  22
#print(confint(svm_model$model))
#print(simulate(svm_model, newdata = test_data))

Make predictions

lm_pred <- predict(lm_model, newdata = test_data, interval = "prediction")
svm_pred <- predict(svm_model, newdata = as.matrix(test_data), method="bootstrap")

Compare predictions

results <- data.frame(
  Actual = mtcars[-train_idx, ]$mpg,
  LM_Pred = lm_pred[,"fit"],
  LM_Lower = lm_pred[,"lwr"],
  LM_Upper = lm_pred[,"upr"],
  svm_Pred = svm_pred[,"fit"],
  svm_Lower = svm_pred[,"lwr"], 
  svm_Upper = svm_pred[,"upr"]
)

# Print results
print("Prediction Intervals Comparison:")
## [1] "Prediction Intervals Comparison:"
print(head(results))
##                Actual  LM_Pred  LM_Lower LM_Upper svm_Pred svm_Lower svm_Upper
## Valiant          18.1 17.93324 10.149847 25.71663 21.33478  15.06733  26.60367
## Merc 280C        17.8 20.63530 13.636618 27.63398 20.86656  15.31682  26.85315
## Toyota Corolla   33.9 28.58373 22.379666 34.78779 28.16744  22.61770  34.15404
## Camaro Z28       13.3 15.85710  8.140858 23.57335 18.65393  13.10419  24.64052
## Porsche 914-2    26.0 31.07535 18.988702 43.16201 23.89842  18.42376  29.96010
## Ford Pantera L   15.8 27.07516 14.930150 39.22016 21.36127  15.81153  27.34786
# Calculate coverage and Winkler scores
lm_coverage <- mean(mtcars[-train_idx, ]$mpg >= results$LM_Lower & 
                   mtcars[-train_idx, ]$mpg <= results$LM_Upper)
svm_coverage <- mean(mtcars[-train_idx, ]$mpg >= results$svm_Lower & 
                      mtcars[-train_idx, ]$mpg <= results$svm_Upper)

lm_winkler <- misc::winkler_score(mtcars[-train_idx, ]$mpg, results$LM_Lower, results$LM_Upper)
svm_winkler <- misc::winkler_score(mtcars[-train_idx, ]$mpg, results$svm_Lower, results$svm_Upper)

print(sprintf("\nPrediction interval metrics:"))
## [1] "\nPrediction interval metrics:"
print(sprintf("Linear Model: %.1f%% coverage, %.3f Winkler score", 
              100 * lm_coverage, mean(lm_winkler)))
## [1] "Linear Model: 100.0% coverage, 18.226 Winkler score"
print(sprintf("Calibrated Model: %.1f%% coverage, %.3f Winkler score", 
              100 * svm_coverage, mean(svm_winkler)))
## [1] "Calibrated Model: 71.4% coverage, 17.780 Winkler score"
sims <- simulate(svm_model, newdata = as.matrix(test_data), nsim = 500, method="bootstrap")
# Plot simulations
matplot(sims, type = "l", 
        col = rgb(0, 0, 1, 0.1), lty = 1,
        xlab = "obs. #", ylab = "Simulated MPG",
        main = "Ridge Model Simulations")
lines(mtcars[-train_idx, ]$mpg, col = "red")        

Example 2: Boston Housing Price Prediction

Load and prepare data

library(MASS)
data(Boston)

set.seed(1243)
train_idx <- sample(nrow(Boston), size = floor(0.8 * nrow(Boston)))
train_data <- Boston[train_idx, ]
test_data <- Boston[-train_idx, -14]  # -14 removes 'medv' (target variable)

Fit models

# Fit regular linear model
start <- proc.time()[3]
lm_model <- lm(medv ~ ., data = train_data)
print(proc.time()[3] - start)
## elapsed 
##   0.009
print(summary(lm_model))
## 
## Call:
## lm(formula = medv ~ ., data = train_data)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -15.220  -2.757  -0.494   1.863  26.961 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  35.832339   5.763210   6.217 1.30e-09 ***
## crim         -0.095389   0.034717  -2.748 0.006282 ** 
## zn            0.042689   0.016086   2.654 0.008283 ** 
## indus        -0.033013   0.073521  -0.449 0.653657    
## chas          2.506064   0.939731   2.667 0.007977 ** 
## nox         -17.521010   4.237379  -4.135 4.35e-05 ***
## rm            3.966727   0.477640   8.305 1.66e-15 ***
## age           0.006479   0.014922   0.434 0.664410    
## dis          -1.463187   0.232348  -6.297 8.17e-10 ***
## rad           0.253984   0.075379   3.369 0.000828 ***
## tax          -0.009853   0.004350  -2.265 0.024068 *  
## ptratio      -1.002914   0.147016  -6.822 3.44e-11 ***
## black         0.008723   0.002984   2.923 0.003664 ** 
## lstat        -0.501984   0.057704  -8.699  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 4.835 on 390 degrees of freedom
## Multiple R-squared:  0.7403, Adjusted R-squared:  0.7316 
## F-statistic: 85.51 on 13 and 390 DF,  p-value: < 2.2e-16
print(confint(lm_model))
##                    2.5 %      97.5 %
## (Intercept)  24.50149090 47.16318623
## crim         -0.16364441 -0.02713269
## zn            0.01106383  0.07431451
## indus        -0.17755967  0.11153316
## chas          0.65849254  4.35363615
## nox         -25.85197459 -9.19004505
## rm            3.02765548  4.90579898
## age          -0.02285933  0.03581667
## dis          -1.91999833 -1.00637601
## rad           0.10578379  0.40218383
## tax          -0.01840515 -0.00129986
## ptratio      -1.29195676 -0.71387117
## black         0.00285660  0.01458927
## lstat        -0.61543411 -0.38853422
# Fit calibrated model 
start <- proc.time()[3]
svm_model <- rvfl::calibmodel(lambda=10**seq(-10, 10, length.out=100), x = as.matrix(train_data[,-14]), y = train_data$medv, engine = glmGamma)
print(proc.time()[3] - start)
## elapsed 
##   0.092
print(summary(svm_model$model))
## 
## Call:
## svm(formula = formula, data = ..1)
## 
## 
## Parameters:
##    SVM-Type:  eps-regression 
##  SVM-Kernel:  radial 
##        cost:  1 
##       gamma:  0.07692308 
##     epsilon:  0.1 
## 
## 
## Number of Support Vectors:  147
#print(confint(svm_model$model))
#print(simulate(svm_model, newdata = test_data))

lm_pred <- predict(lm_model, newdata = test_data, interval = "prediction")
svm_pred <- predict(svm_model, newdata = as.matrix(test_data), method="bootstrap")

Make predictions and compare

results <- data.frame(
  Actual = Boston[-train_idx, ]$medv,
  LM_Pred = lm_pred[,"fit"],
  LM_Lower = lm_pred[,"lwr"],
  LM_Upper = lm_pred[,"upr"],
  svm_Pred = svm_pred[,"fit"],
  svm_Lower = svm_pred[,"lwr"], 
  svm_Upper = svm_pred[,"upr"]
)

# Print results
print("Prediction Intervals Comparison:")
## [1] "Prediction Intervals Comparison:"
print(head(results))
##    Actual  LM_Pred  LM_Lower LM_Upper svm_Pred svm_Lower svm_Upper
## 1    24.0 30.57209 20.958399 40.18579 28.85933 24.333712  37.61434
## 3    34.7 30.68339 21.107377 40.25940 32.92264 23.340798  42.66320
## 4    33.4 28.70511 19.107688 38.30253 31.68660 26.522509  41.24607
## 18   17.5 17.06191  7.487523 26.63630 16.95144  9.299141  25.05877
## 21   13.6 12.85420  3.239688 22.46872 14.40651  9.001747  24.53908
## 24   14.5 14.14956  4.535627 23.76348 15.06066  9.452245  26.41643
# Calculate coverage and Winkler scores
lm_coverage <- mean(Boston[-train_idx, ]$medv >= results$LM_Lower & 
                   Boston[-train_idx, ]$medv <= results$LM_Upper)
svm_coverage <- mean(Boston[-train_idx, ]$medv >= results$svm_Lower & 
                      Boston[-train_idx, ]$medv <= results$svm_Upper)

lm_winkler <- misc::winkler_score(Boston[-train_idx, ]$medv, results$LM_Lower, results$LM_Upper)
svm_winkler <- misc::winkler_score(Boston[-train_idx, ]$medv, results$svm_Lower, results$svm_Upper)

print(sprintf("\nPrediction interval metrics:"))
## [1] "\nPrediction interval metrics:"
print(sprintf("Linear Model: %.1f%% coverage, %.3f Winkler score", 
              100 * lm_coverage, mean(lm_winkler)))
## [1] "Linear Model: 95.1% coverage, 26.711 Winkler score"
print(sprintf("Calibrated Model: %.1f%% coverage, %.3f Winkler score", 
              100 * svm_coverage, mean(svm_winkler)))
## [1] "Calibrated Model: 96.1% coverage, 27.987 Winkler score"
sims <- simulate(svm_model, newdata = as.matrix(test_data), nsim = 500, method="bootstrap")
# Plot simulations
matplot(sims, type = "l", 
        col = rgb(0, 0, 1, 0.1), lty = 1,
        xlab = "obs. #", ylab = "Simulated MPG",
        main = "Ridge Model Simulations")
lines(Boston[-train_idx, ]$medv, col = "red")        

Example 3: Car Price Analysis (Cars93 dataset)

Load and prepare data

data(Cars93, package = "MASS")

# Remove rows with missing values
Cars93 <- na.omit(Cars93)

# Select numeric predictors and price as response
predictors <- c("MPG.city", "MPG.highway", "EngineSize", "Horsepower", 
                "RPM", "Rev.per.mile", "Fuel.tank.capacity", "Length", 
                "Wheelbase", "Width", "Turn.circle", "Weight")
car_data <- Cars93[, c(predictors, "Price")]

set.seed(1243)
train_idx <- sample(nrow(car_data), size = floor(0.8 * nrow(car_data)))
train_data <- car_data[train_idx, ]
test_data <- car_data[-train_idx, -which(names(car_data) == "Price")]

Fit models

# Fit regular linear model
start <- proc.time()[3]
lm_model <- lm(Price ~ ., data = train_data)
print(proc.time()[3] - start)
## elapsed 
##   0.028
print(summary(lm_model))
## 
## Call:
## lm(formula = Price ~ ., data = train_data)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -8.9444 -3.4879 -0.0823  2.5740 10.7036 
## 
## Coefficients:
##                      Estimate Std. Error t value Pr(>|t|)  
## (Intercept)         6.0285088 31.8235292   0.189   0.8505  
## MPG.city           -0.3069383  0.4798163  -0.640   0.5252  
## MPG.highway        -0.0041568  0.4591254  -0.009   0.9928  
## EngineSize          2.4810783  2.4779636   1.001   0.3213  
## Horsepower          0.1016741  0.0446071   2.279   0.0268 *
## RPM                 0.0001602  0.0023006   0.070   0.9448  
## Rev.per.mile        0.0049762  0.0026868   1.852   0.0697 .
## Fuel.tank.capacity -0.1866149  0.5198553  -0.359   0.7211  
## Length              0.0203242  0.1333518   0.152   0.8795  
## Wheelbase           0.4888949  0.2655782   1.841   0.0713 .
## Width              -0.8957689  0.4446575  -2.015   0.0491 *
## Turn.circle        -0.3835124  0.3579624  -1.071   0.2889  
## Weight              0.0041302  0.0059593   0.693   0.4914  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 4.731 on 52 degrees of freedom
## Multiple R-squared:  0.7886, Adjusted R-squared:  0.7398 
## F-statistic: 16.16 on 12 and 52 DF,  p-value: 1.548e-13
print(confint(lm_model))
##                            2.5 %       97.5 %
## (Intercept)        -5.783007e+01 69.887091986
## MPG.city           -1.269760e+00  0.655883438
## MPG.highway        -9.254594e-01  0.917145804
## EngineSize         -2.491319e+00  7.453475962
## Horsepower          1.216348e-02  0.191184768
## RPM                -4.456410e-03  0.004776746
## Rev.per.mile       -4.152533e-04  0.010367616
## Fuel.tank.capacity -1.229781e+00  0.856550981
## Length             -2.472657e-01  0.287914102
## Wheelbase          -4.402679e-02  1.021816593
## Width              -1.788039e+00 -0.003498354
## Turn.circle        -1.101817e+00  0.334791684
## Weight             -7.828121e-03  0.016088453
# Fit calibrated model 
start <- proc.time()[3]
svm_model <- rvfl::calibmodel(lambda=10**seq(-10, 10, length.out=100), x = as.matrix(train_data[,-which(names(train_data) == "Price")]), 
                               y = train_data$Price, engine = glmGamma)
print(proc.time()[3] - start)
## elapsed 
##   0.097
print(summary(svm_model$model))
## 
## Call:
## svm(formula = formula, data = ..1)
## 
## 
## Parameters:
##    SVM-Type:  eps-regression 
##  SVM-Kernel:  radial 
##        cost:  1 
##       gamma:  0.08333333 
##     epsilon:  0.1 
## 
## 
## Number of Support Vectors:  37
#print(confint(svm_model$model))
#print(simulate(svm_model, newdata = as.matrix(test_data)))

lm_pred <- predict(lm_model, newdata = test_data, interval = "prediction")
svm_pred <- predict(svm_model, newdata = as.matrix(test_data), method="bootstrap")

Make predictions and compare

results <- data.frame(
  Actual = car_data[-train_idx, "Price"],
  LM_Pred = lm_pred[,"fit"],
  LM_Lower = lm_pred[,"lwr"],
  LM_Upper = lm_pred[,"upr"],
  svm_Pred = svm_pred[,"fit"],
  svm_Lower = svm_pred[,"lwr"], 
  svm_Upper = svm_pred[,"upr"]
)

# Print results
print("Prediction Intervals Comparison:")
## [1] "Prediction Intervals Comparison:"
print(results)
##    Actual   LM_Pred   LM_Lower LM_Upper  svm_Pred svm_Lower svm_Upper
## 7    20.8 22.284761 12.3951390 32.17438 24.644307 17.807962  43.33853
## 12   13.4 14.354853  3.3289673 25.38074 11.674070  4.883566  30.36830
## 15   15.9 17.852333  7.2347759 28.46989 16.590922 10.534942  36.07882
## 21   15.8 19.516709  9.4219263 29.61149 18.463087 11.904269  34.04776
## 23    9.2 14.340649  3.5068316 25.17447 13.462951  6.904134  31.68293
## 29   12.2  9.028432 -1.4360619 19.49293 10.021731  3.476222  28.24171
## 30   19.3 29.775630 19.1961282 40.35513 23.626379 16.776725  42.32061
## 31    7.4  6.013838 -5.5354656 17.56314 12.873051  6.023397  30.80219
## 32   10.1 14.806645  4.1551453 25.45814 14.838166  8.133931  32.91272
## 42   12.1  8.704607 -3.6984146 21.10763 13.314959  6.756141  31.53493
## 54   11.6 10.002970 -0.3839704 20.38991  9.754851  3.209342  28.73991
## 59   61.9 34.711053 24.1509123 45.27119 22.914288 16.414621  38.49896
## 72   14.4  9.110664 -1.1222765 19.34360 12.453800  5.578156  31.12204
## 73    9.0 11.005860  0.0448295 21.96689 10.922573  4.060237  29.59081
## 76   18.5 26.775186 16.6537717 36.89660 23.760965 16.911311  39.05481
## 91   23.3 24.122428 12.0542302 36.19063 20.927726 14.078073  39.62195
## 92   22.7 18.531114  8.4532906 28.60894 16.130723  9.571905  34.35070
# Calculate coverage and Winkler scores
lm_coverage <- mean(car_data[-train_idx, "Price"] >= results$LM_Lower & 
                   car_data[-train_idx, "Price"] <= results$LM_Upper)
svm_coverage <- mean(car_data[-train_idx, "Price"] >= results$svm_Lower & 
                      car_data[-train_idx, "Price"] <= results$svm_Upper)

lm_winkler <- misc::winkler_score(car_data[-train_idx, "Price"], results$LM_Lower, results$LM_Upper)
svm_winkler <- misc::winkler_score(car_data[-train_idx, "Price"], results$svm_Lower, results$svm_Upper)

print(sprintf("\nPrediction interval metrics:"))
## [1] "\nPrediction interval metrics:"
print(sprintf("Linear Model: %.1f%% coverage, %.3f Winkler score", 
              100 * lm_coverage, mean(lm_winkler)))
## [1] "Linear Model: 94.1% coverage, 60.599 Winkler score"
print(sprintf("Calibrated Model: %.1f%% coverage, %.3f Winkler score", 
              100 * svm_coverage, mean(svm_winkler)))
## [1] "Calibrated Model: 94.1% coverage, 79.725 Winkler score"
sims <- simulate(svm_model, newdata = as.matrix(test_data), nsim = 500, method="bootstrap")
# Plot simulations
matplot(sims, type = "l", 
        col = rgb(0, 0, 1, 0.1), lty = 1,
        xlab = "obs. #", ylab = "Simulated Price",
        main = "Ridge Model Simulations")
lines(car_data[-train_idx, "Price"], col = "red")