ridgemodel_summary_plot.Rmd
library(rvfl)
# Fit regular linear model
start <- proc.time()[3]
lm_model <- lm(mpg ~ ., data = train_data)
print(proc.time()[3] - start)
## elapsed
## 0.018
##
## Call:
## lm(formula = mpg ~ ., data = train_data)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.5211 -0.9792 -0.0324 1.1808 4.9814
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -5.054416 25.456900 -0.199 0.8455
## cyl 0.695392 1.396506 0.498 0.6262
## disp 0.005254 0.017342 0.303 0.7664
## hp -0.007610 0.027723 -0.274 0.7877
## drat 4.128157 2.724353 1.515 0.1520
## wt -1.621396 2.139071 -0.758 0.4610
## qsec 0.064356 0.932144 0.069 0.9459
## vs 0.138716 3.421183 0.041 0.9682
## am -0.498476 2.956568 -0.169 0.8685
## gear 4.402648 2.287816 1.924 0.0749 .
## carb -1.999389 1.299580 -1.538 0.1462
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.464 on 14 degrees of freedom
## Multiple R-squared: 0.8938, Adjusted R-squared: 0.818
## F-statistic: 11.79 on 10 and 14 DF, p-value: 3.4e-05
## 2.5 % 97.5 %
## (Intercept) -59.65403559 49.54520296
## cyl -2.29981561 3.69060001
## disp -0.03194096 0.04244882
## hp -0.06707095 0.05185084
## drat -1.71500030 9.97131342
## wt -6.20924769 2.96645550
## qsec -1.93489537 2.06360651
## vs -7.19899241 7.47642359
## am -6.83968216 5.84273112
## gear -0.50422869 9.30952400
## carb -4.78671119 0.78793282
# Fit calibrated model
start <- proc.time()[3]
ridge_model <- rvfl::calibmodel(lambda=10**seq(-10, 10, length.out=100), x = as.matrix(train_data[,-1]), y = train_data$mpg)
print(proc.time()[3] - start)
## elapsed
## 0.072
## $model_summary
##
## Call:
## engine(formula = y ~ . - 1, data = df_train)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.5715 -1.6454 -0.6596 1.9582 5.6548
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## cyl -0.4956 0.7586 -0.653 0.524
## disp -0.5709 0.7473 -0.764 0.458
## hp -0.6475 0.7508 -0.862 0.403
## drat 0.8272 0.6951 1.190 0.254
## wt -0.7784 0.7239 -1.075 0.300
## qsec 0.2927 0.7384 0.396 0.698
## vs 0.4345 0.7133 0.609 0.552
## am 0.7154 0.6849 1.045 0.314
## gear 0.4152 0.7179 0.578 0.572
## carb -0.7023 0.6358 -1.105 0.288
##
## Residual standard error: 2.99 on 14 degrees of freedom
## Multiple R-squared: 0.7422, Adjusted R-squared: 0.5581
## F-statistic: 4.031 on 10 and 14 DF, p-value: 0.009055
##
##
## $derivatives_summary
## Effect.mean of x Std.Error p.value CI.lower CI.upper
## cyl -0.272562363 1.251420e-11 1.261186e-223 -0.272562363 -0.272562363
## disp -0.004417317 1.602004e-11 5.557056e-180 -0.004417317 -0.004417317
## hp -0.011728958 1.766407e-11 9.254360e-189 -0.011728958 -0.011728958
## drat 1.594838830 1.851980e-11 2.340861e-237 1.594838830 1.594838830
## wt -0.748782818 1.224970e-11 6.207613e-234 -0.748782819 -0.748782818
## qsec 0.188050094 3.700743e-12 4.350927e-232 0.188050094 0.188050094
## vs 0.857626338 1.185444e-11 1.287167e-235 0.857626338 0.857626338
## am 1.460396700 6.124848e-12 1.572499e-247 1.460396700 1.460396700
## gear 0.638082724 1.510165e-11 3.031228e-230 0.638082724 0.638082724
## carb -0.532426743 1.504239e-11 1.780484e-228 -0.532426743 -0.532426743
## NULL
# Fit regular linear model
start <- proc.time()[3]
lm_model <- lm(medv ~ ., data = train_data)
print(proc.time()[3] - start)
## elapsed
## 0.011
##
## Call:
## lm(formula = medv ~ ., data = train_data)
##
## Residuals:
## Min 1Q Median 3Q Max
## -15.220 -2.757 -0.494 1.863 26.961
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 35.832339 5.763210 6.217 1.30e-09 ***
## crim -0.095389 0.034717 -2.748 0.006282 **
## zn 0.042689 0.016086 2.654 0.008283 **
## indus -0.033013 0.073521 -0.449 0.653657
## chas 2.506064 0.939731 2.667 0.007977 **
## nox -17.521010 4.237379 -4.135 4.35e-05 ***
## rm 3.966727 0.477640 8.305 1.66e-15 ***
## age 0.006479 0.014922 0.434 0.664410
## dis -1.463187 0.232348 -6.297 8.17e-10 ***
## rad 0.253984 0.075379 3.369 0.000828 ***
## tax -0.009853 0.004350 -2.265 0.024068 *
## ptratio -1.002914 0.147016 -6.822 3.44e-11 ***
## black 0.008723 0.002984 2.923 0.003664 **
## lstat -0.501984 0.057704 -8.699 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.835 on 390 degrees of freedom
## Multiple R-squared: 0.7403, Adjusted R-squared: 0.7316
## F-statistic: 85.51 on 13 and 390 DF, p-value: < 2.2e-16
## 2.5 % 97.5 %
## (Intercept) 24.50149090 47.16318623
## crim -0.16364441 -0.02713269
## zn 0.01106383 0.07431451
## indus -0.17755967 0.11153316
## chas 0.65849254 4.35363615
## nox -25.85197459 -9.19004505
## rm 3.02765548 4.90579898
## age -0.02285933 0.03581667
## dis -1.91999833 -1.00637601
## rad 0.10578379 0.40218383
## tax -0.01840515 -0.00129986
## ptratio -1.29195676 -0.71387117
## black 0.00285660 0.01458927
## lstat -0.61543411 -0.38853422
# Fit calibrated model
start <- proc.time()[3]
ridge_model <- rvfl::calibmodel(lambda=10**seq(-10, 10, length.out=100), x = as.matrix(train_data[,-14]), y = train_data$medv)
print(proc.time()[3] - start)
## elapsed
## 0.029
## $model_summary
##
## Call:
## engine(formula = y ~ . - 1, data = df_train)
##
## Residuals:
## Min 1Q Median 3Q Max
## -10.8939 -2.9240 -0.5968 1.9927 26.0705
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## crim -1.0059 0.5000 -2.012 0.045575 *
## zn 0.8264 0.4991 1.656 0.099298 .
## indus 0.1430 0.7574 0.189 0.850401
## chas 0.6056 0.3571 1.696 0.091434 .
## nox -1.8962 0.6871 -2.760 0.006311 **
## rm 2.7488 0.4796 5.731 3.56e-08 ***
## age 0.7043 0.6016 1.171 0.243052
## dis -2.1701 0.6775 -3.203 0.001579 **
## rad 1.9496 0.9275 2.102 0.036785 *
## tax -1.3630 1.0753 -1.268 0.206424
## ptratio -1.7350 0.4696 -3.694 0.000283 ***
## black 0.7928 0.4409 1.798 0.073660 .
## lstat -3.9392 0.5793 -6.800 1.15e-10 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 5.065 on 203 degrees of freedom
## Multiple R-squared: 0.6897, Adjusted R-squared: 0.6698
## F-statistic: 34.71 on 13 and 203 DF, p-value: < 2.2e-16
##
##
## $derivatives_summary
## Effect.mean of x Std.Error p.value CI.lower CI.upper
## crim -0.109407657 1.326001e-11 0 -0.109407657 -0.109407657
## zn 0.034950695 1.356861e-11 0 0.034950695 0.034950695
## indus 0.020962278 6.519300e-12 0 0.020962278 0.020962278
## chas 2.272330710 1.209542e-11 0 2.272330710 2.272330710
## nox -16.268105574 1.475402e-11 0 -16.268105574 -16.268105574
## rm 3.876061598 1.534257e-11 0 3.876061598 3.876061598
## age 0.024769829 7.315992e-12 0 0.024769829 0.024769829
## dis -1.020603896 1.194942e-11 0 -1.020603896 -1.020603896
## rad 0.222028558 1.236129e-11 0 0.222028558 0.222028558
## tax -0.007978888 5.183059e-12 0 -0.007978888 -0.007978888
## ptratio -0.793111734 1.383592e-11 0 -0.793111734 -0.793111734
## black 0.008408181 1.089693e-11 0 0.008408181 0.008408181
## lstat -0.539244502 9.324810e-12 0 -0.539244502 -0.539244502
## NULL
# Fit regular linear model
start <- proc.time()[3]
lm_model <- lm(Employed ~ ., data = train_data)
print(proc.time()[3] - start)
## elapsed
## 0.005
##
## Call:
## lm(formula = Employed ~ ., data = train_data)
##
## Residuals:
## 1948 1951 1962 1960 1953 1958 1956 1947
## -0.15209 0.23935 -0.15902 -0.15702 0.04017 -0.11637 0.35418 0.07762
## 1954 1955 1952 1961
## -0.03138 -0.23164 -0.18207 0.31828
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -3.314e+03 9.930e+02 -3.338 0.02061 *
## GNP.deflator -7.877e-02 1.033e-01 -0.763 0.48016
## GNP -6.186e-03 4.032e-02 -0.153 0.88407
## Unemployed -1.578e-02 6.060e-03 -2.604 0.04802 *
## Armed.Forces -1.074e-02 2.478e-03 -4.336 0.00745 **
## Population -3.256e-01 2.798e-01 -1.164 0.29697
## Year 1.758e+00 5.066e-01 3.470 0.01784 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.3053 on 5 degrees of freedom
## Multiple R-squared: 0.9962, Adjusted R-squared: 0.9916
## F-statistic: 216.2 on 6 and 5 DF, p-value: 7.153e-06
## 2.5 % 97.5 %
## (Intercept) -5.866601e+03 -7.615995e+02
## GNP.deflator -3.443182e-01 1.867776e-01
## GNP -1.098296e-01 9.745798e-02
## Unemployed -3.135588e-02 -2.021522e-04
## Armed.Forces -1.711223e-02 -4.374897e-03
## Population -1.044745e+00 3.935168e-01
## Year 4.557539e-01 3.060217e+00
# Fit calibrated model
start <- proc.time()[3]
ridge_model <- rvfl::calibmodel(lambda=10**seq(-10, 10, length.out=100), x = as.matrix(train_data[,-7]), y = train_data$Employed)
print(proc.time()[3] - start)
## elapsed
## 0.014
## $model_summary
##
## Call:
## engine(formula = y ~ . - 1, data = df_train)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.46493 -0.07890 0.03725 0.08371 0.52111
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## GNP.deflator -1.2793 0.9873 -1.296 0.23118
## GNP 0.3637 2.9849 0.122 0.90603
## Unemployed -1.5944 0.6028 -2.645 0.02949 *
## Armed.Forces -0.6449 0.1501 -4.297 0.00263 **
## Population -1.0203 2.2167 -0.460 0.65758
## Year 6.7454 2.0487 3.292 0.01098 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.2715 on 8 degrees of freedom
## Multiple R-squared: 0.9934, Adjusted R-squared: 0.9885
## F-statistic: 201.8 on 6 and 8 DF, p-value: 2.755e-08
##
##
## $derivatives_summary
## Effect.mean of x Std.Error p.value CI.lower
## GNP.deflator -0.120152929 2.848856e-09 2.827651e-93 -0.120152935
## GNP 0.003668304 2.848856e-09 1.412289e-73 0.003668298
## Unemployed -0.015078193 1.624098e-09 9.923701e-85 -0.015078196
## Armed.Forces -0.009512585 1.624098e-09 3.956700e-82 -0.009512589
## Population -0.140698559 1.624098e-09 2.440332e-97 -0.140698563
## Year 1.381478725 3.248195e-09 2.535886e-106 1.381478718
## CI.upper
## GNP.deflator -0.120152923
## GNP 0.003668310
## Unemployed -0.015078189
## Armed.Forces -0.009512582
## Population -0.140698556
## Year 1.381478732
## NULL
# Fit regular linear model
start <- proc.time()[3]
lm_model <- lm(y ~ ., data = train_data)
print(proc.time()[3] - start)
## elapsed
## 0.009
##
## Call:
## lm(formula = y ~ ., data = train_data)
##
## Residuals:
## Min 1Q Median 3Q Max
## -391.18 -114.34 -14.92 117.15 460.03
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -6991.5860 2219.2203 -3.150 0.00483 **
## M 7.1029 5.4076 1.313 0.20319
## So -89.2556 183.9512 -0.485 0.63255
## Ed 22.1862 7.7816 2.851 0.00956 **
## Po1 19.4504 15.2637 1.274 0.21648
## Po2 -10.7837 16.0263 -0.673 0.50837
## LF -1.3616 1.8522 -0.735 0.47038
## M.F 2.9017 2.6491 1.095 0.28576
## Pop -0.9371 1.6448 -0.570 0.57492
## NW 0.8155 0.9873 0.826 0.41810
## U1 -8.4003 5.8482 -1.436 0.16562
## U2 19.8835 11.0640 1.797 0.08671 .
## GDP 0.7120 1.2620 0.564 0.57861
## Ineq 8.0589 2.8019 2.876 0.00904 **
## Prob -3533.2550 2862.6770 -1.234 0.23074
## Time 1.3920 9.4699 0.147 0.88454
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 234.8 on 21 degrees of freedom
## Multiple R-squared: 0.758, Adjusted R-squared: 0.5851
## F-statistic: 4.385 on 15 and 21 DF, p-value: 0.001081
## 2.5 % 97.5 %
## (Intercept) -11606.707241 -2376.464825
## M -4.142866 18.348646
## So -471.803028 293.291831
## Ed 6.003559 38.368826
## Po1 -12.292291 51.193066
## Po2 -44.112293 22.544935
## LF -5.213545 2.490260
## M.F -2.607377 8.410782
## Pop -4.357700 2.483540
## NW -1.237650 2.868551
## U1 -20.562297 3.761712
## U2 -3.125406 42.892337
## GDP -1.912548 3.336557
## Ineq 2.232069 13.885810
## Prob -9486.517778 2420.007809
## Time -18.301822 21.085767
# Fit calibrated model
start <- proc.time()[3]
ridge_model <- rvfl::calibmodel(lambda=10**seq(-10, 10, length.out=100), x = as.matrix(train_data[,-16]), y = train_data$y)
print(proc.time()[3] - start)
## elapsed
## 0.019
## $model_summary
##
## Call:
## engine(formula = y ~ . - 1, data = df_train)
##
## Residuals:
## Min 1Q Median 3Q Max
## -362.44 -182.76 -80.78 49.85 441.14
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## M 80.823 73.867 1.094 0.287
## So -44.123 88.038 -0.501 0.622
## Ed 8.284 82.799 0.100 0.921
## Po1 86.606 89.029 0.973 0.342
## Po2 90.128 88.143 1.023 0.319
## LF 29.463 79.163 0.372 0.714
## M.F 52.984 65.431 0.810 0.428
## Pop -42.968 79.616 -0.540 0.595
## NW 97.504 86.985 1.121 0.276
## U1 -8.699 72.594 -0.120 0.906
## U2 26.426 75.343 0.351 0.729
## GDP 67.582 86.059 0.785 0.441
## Ineq 81.123 82.098 0.988 0.335
## Prob -66.384 64.063 -1.036 0.312
## Time 41.257 63.728 0.647 0.525
##
## Residual standard error: 245 on 20 degrees of freedom
## Multiple R-squared: 0.4321, Adjusted R-squared: 0.006091
## F-statistic: 1.014 on 15 and 20 DF, p-value: 0.4792
##
##
## $derivatives_summary
## Effect.mean of x Std.Error p.value CI.lower CI.upper
## M 6.4106715 4.932428e-09 1.983781e-285 6.4106715 6.4106715
## So -91.1675631 4.286112e-09 0.000000e+00 -91.1675631 -91.1675631
## Ed 0.7733606 3.859431e-09 8.034392e-258 0.7733605 0.7733606
## Po1 2.9747341 3.103584e-09 6.226907e-281 2.9747341 2.9747341
## Po2 3.2426017 4.912254e-09 2.001309e-275 3.2426017 3.2426017
## LF 0.7449199 3.897834e-09 4.021792e-257 0.7449199 0.7449199
## M.F 1.9354222 4.072264e-09 1.419697e-270 1.9354222 1.9354222
## Pop -1.0406821 4.674003e-09 2.232342e-259 -1.0406821 -1.0406821
## NW 1.0284186 5.206657e-09 1.310319e-257 1.0284186 1.0284187
## U1 -0.5081944 4.912254e-09 4.641734e-248 -0.5081944 -0.5081944
## U2 3.0572692 4.544743e-09 1.052257e-275 3.0572692 3.0572692
## GDP 0.7398920 5.366321e-09 2.663376e-252 0.7398920 0.7398920
## Ineq 2.1276257 3.103584e-09 5.534414e-276 2.1276257 2.1276257
## Prob -2939.4151255 1.850918e-09 0.000000e+00 -2939.4151255 -2939.4151255
## Time 5.6384259 4.229996e-09 8.401203e-286 5.6384259 5.6384259
## NULL
data(Cars93, package = "MASS")
# Remove rows with missing values
Cars93 <- na.omit(Cars93)
# Select numeric predictors and price as response
predictors <- c("MPG.city", "MPG.highway", "EngineSize", "Horsepower",
"RPM", "Rev.per.mile", "Fuel.tank.capacity", "Length",
"Wheelbase", "Width", "Turn.circle", "Weight")
car_data <- Cars93[, c(predictors, "Price")]
set.seed(1243)
train_idx <- sample(nrow(car_data), size = floor(0.8 * nrow(car_data)))
train_data <- car_data[train_idx, ]
test_data <- car_data[-train_idx, -which(names(car_data) == "Price")]
# Fit regular linear model
start <- proc.time()[3]
lm_model <- lm(Price ~ ., data = train_data)
print(proc.time()[3] - start)
## elapsed
## 0.009
##
## Call:
## lm(formula = Price ~ ., data = train_data)
##
## Residuals:
## Min 1Q Median 3Q Max
## -8.9444 -3.4879 -0.0823 2.5740 10.7036
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.0285088 31.8235292 0.189 0.8505
## MPG.city -0.3069383 0.4798163 -0.640 0.5252
## MPG.highway -0.0041568 0.4591254 -0.009 0.9928
## EngineSize 2.4810783 2.4779636 1.001 0.3213
## Horsepower 0.1016741 0.0446071 2.279 0.0268 *
## RPM 0.0001602 0.0023006 0.070 0.9448
## Rev.per.mile 0.0049762 0.0026868 1.852 0.0697 .
## Fuel.tank.capacity -0.1866149 0.5198553 -0.359 0.7211
## Length 0.0203242 0.1333518 0.152 0.8795
## Wheelbase 0.4888949 0.2655782 1.841 0.0713 .
## Width -0.8957689 0.4446575 -2.015 0.0491 *
## Turn.circle -0.3835124 0.3579624 -1.071 0.2889
## Weight 0.0041302 0.0059593 0.693 0.4914
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.731 on 52 degrees of freedom
## Multiple R-squared: 0.7886, Adjusted R-squared: 0.7398
## F-statistic: 16.16 on 12 and 52 DF, p-value: 1.548e-13
## 2.5 % 97.5 %
## (Intercept) -5.783007e+01 69.887091986
## MPG.city -1.269760e+00 0.655883438
## MPG.highway -9.254594e-01 0.917145804
## EngineSize -2.491319e+00 7.453475962
## Horsepower 1.216348e-02 0.191184768
## RPM -4.456410e-03 0.004776746
## Rev.per.mile -4.152533e-04 0.010367616
## Fuel.tank.capacity -1.229781e+00 0.856550981
## Length -2.472657e-01 0.287914102
## Wheelbase -4.402679e-02 1.021816593
## Width -1.788039e+00 -0.003498354
## Turn.circle -1.101817e+00 0.334791684
## Weight -7.828121e-03 0.016088453
# Fit calibrated model
start <- proc.time()[3]
ridge_model <- rvfl::calibmodel(lambda=10**seq(-10, 10, length.out=100), x = as.matrix(train_data[,-which(names(train_data) == "Price")]),
y = train_data$Price)
print(proc.time()[3] - start)
## elapsed
## 0.017
## $model_summary
##
## Call:
## engine(formula = y ~ . - 1, data = df_train)
##
## Residuals:
## Min 1Q Median 3Q Max
## -7.7848 -2.9438 -0.5461 1.0213 13.0730
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## MPG.city -0.90230 1.49983 -0.602 0.5516
## MPG.highway -0.33641 1.39992 -0.240 0.8116
## EngineSize 2.56961 1.62400 1.582 0.1231
## Horsepower 2.43635 1.35158 1.803 0.0806 .
## RPM 0.90504 1.05839 0.855 0.3987
## Rev.per.mile 1.30430 1.26257 1.033 0.3091
## Fuel.tank.capacity 0.24579 1.53119 0.161 0.8734
## Length 0.48894 1.63807 0.298 0.7672
## Wheelbase 1.73442 1.50930 1.149 0.2588
## Width -1.03940 1.50301 -0.692 0.4941
## Turn.circle -0.04015 1.23036 -0.033 0.9742
## Weight 1.26377 1.72926 0.731 0.4701
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.635 on 33 degrees of freedom
## Multiple R-squared: 0.7162, Adjusted R-squared: 0.613
## F-statistic: 6.941 on 12 and 33 DF, p-value: 4.626e-06
##
##
## $derivatives_summary
## Effect.mean of x Std.Error p.value CI.lower
## MPG.city -0.167966274 4.572614e-11 0.000000e+00 -0.167966274
## MPG.highway -0.070195128 4.167413e-11 0.000000e+00 -0.070195129
## EngineSize 2.469188497 4.459692e-11 0.000000e+00 2.469188497
## Horsepower 0.047182250 4.584989e-11 0.000000e+00 0.047182250
## RPM 0.001491490 4.694898e-11 1.399465e-295 0.001491490
## Rev.per.mile 0.002555233 2.245672e-11 5.833927e-320 0.002555233
## Fuel.tank.capacity 0.079054422 4.167413e-11 0.000000e+00 0.079054422
## Length 0.032229864 3.461836e-11 0.000000e+00 0.032229864
## Wheelbase 0.264582497 3.441316e-11 0.000000e+00 0.264582497
## Width -0.272013951 2.905658e-11 0.000000e+00 -0.272013951
## Turn.circle -0.012610575 2.740055e-11 0.000000e+00 -0.012610575
## Weight 0.002223263 2.479512e-11 2.080750e-315 0.002223263
## CI.upper
## MPG.city -0.167966274
## MPG.highway -0.070195128
## EngineSize 2.469188497
## Horsepower 0.047182251
## RPM 0.001491490
## Rev.per.mile 0.002555233
## Fuel.tank.capacity 0.079054422
## Length 0.032229864
## Wheelbase 0.264582497
## Width -0.272013951
## Turn.circle -0.012610575
## Weight 0.002223263
## NULL