Randomized and quasi-randomized nnetworks for supervised learning and multivariate time series forecasting
This is the R
version of Python’s Techtonique/nnetsauce. See these posts for more details.
If you encounter errors on Windows, envisage using the Windows Subsystems for Linux.
Keep in mind that there are many other models implemented. See these posts.
library(datasets)
#'
set.seed(123)
X <- as.matrix(iris[, 1:4])
y <- as.integer(iris$Species) - 1L
#'
(index_train <- base::sample.int(n = nrow(X),
size = floor(0.8*nrow(X)),
replace = FALSE))
X_train <- X[index_train, ]
y_train <- y[index_train]
X_test <- X[-index_train, ]
y_test <- y[-index_train]
#'
obj <- LazyClassifier()
res <- obj$fit(X_train, X_test, y_train, y_test)
print(res[[1]])
X <- MASS::Boston[,-14] # dataset has an ethical problem
y <- MASS::Boston$medv
set.seed(13)
(index_train <- base::sample.int(n = nrow(X),
size = floor(0.8*nrow(X)),
replace = FALSE))
X_train <- X[index_train, ]
y_train <- y[index_train]
X_test <- X[-index_train, ]
y_test <- y[-index_train]
obj <- LazyRegressor()
res <- obj$fit(X_train, X_test, y_train, y_test)
print(res[[1]])
set.seed(123)
X <- matrix(rnorm(300), 100, 3)
(index_train <- base::sample.int(n = nrow(X),
size = floor(0.8*nrow(X)),
replace = FALSE))
X_train <- data.frame(X[index_train, ])
X_test <- data.frame(X[-index_train, ])
obj <- LazyMTS()
res <- obj$fit(X_train, X_test)
print(res[[1]])