LazyClassifier.Rd
See also https://techtonique.github.io/nnetsauce/
LazyClassifier(
verbose = 0,
ignore_warnings = TRUE,
custom_metric = NULL,
predictions = FALSE,
random_state = 42L,
estimators = "all",
preprocess = FALSE,
...
)
monitor progress (0
, default, is false and 1
is true)
print trace when model fitting failed
defining a custom metric (default is NULL
)
obtain predictions (default is FALSE
)
reproducibility seed
specify classifiers to be adjusted (default is 'all')
preprocessing input covariates (default is FALSE FALSE
)
additional parameters to be passed to nnetsauce::CustomClassifier
a list that you can $fit
library(datasets)
set.seed(123)
X <- as.matrix(iris[, 1:4])
y <- as.integer(iris$Species) - 1L
(index_train <- base::sample.int(n = nrow(X),
size = floor(0.8*nrow(X)),
replace = FALSE))
#> [1] 14 50 118 43 150 148 90 91 143 92 137 99 72 26 7 78 81 147
#> [19] 103 117 76 32 106 109 136 9 41 74 23 27 60 53 126 119 121 96
#> [37] 38 89 34 93 69 138 130 63 13 82 97 142 25 114 21 79 124 47
#> [55] 144 120 16 6 127 86 132 39 31 134 149 112 4 128 110 102 52 22
#> [73] 129 87 35 40 30 12 88 123 64 146 67 122 37 8 51 10 115 42
#> [91] 44 85 107 139 73 20 46 17 54 108 75 80 71 15 24 68 133 145
#> [109] 29 104 45 140 101 135 95 116 5 111 94 49
X_train <- X[index_train, ]
y_train <- y[index_train]
X_test <- X[-index_train, ]
y_test <- y[-index_train]
obj <- LazyClassifier()
res <- obj$fit(X_train, X_test, y_train, y_test)
print(res[[1]])
#> [1] 0.9666667 0.9666667