mlf.Rd
Conformalized Forecasting using Machine Leaning models
A numeric vector or time series of class ts
Forecasting horizon
Confidence level for prediction intervals
Number of lags of the input time series considered in the regression
Fitting function (Statistical/ML model). Default is Ridge regression.
Prediction function (Statistical/ML model)
Coefficients of the fitted model. If provided, a linear combination with the coefficients is used to compute the prediction.
Type of prediction interval
Number of bootstrap replications or number of simulations
"mean" or "median" (aggregation method)
additional parameters passed to the fitting function fit_func
res <- ahead::mlf(USAccDeaths, h=10L, lags=15L, type_pi="surrogate", B=250L)
plot(res)
res <- ahead::mlf(USAccDeaths, fit_func = glmnet::cv.glmnet, h=15L, lags=15L,
type_pi="kde", B=250L)
#> Warning: Option grouped=FALSE enforced in cv.glmnet, since < 3 observations per fold
#> Warning: Option grouped=FALSE enforced in cv.glmnet, since < 3 observations per fold
plot(res)
(res <- ahead::mlf(USAccDeaths, fit_func = e1071::svm, h=15L, lags=15L,
type_pi="kde", B=250L))
#> Point Forecast Lo 95 Hi 95
#> Jan 1979 8199.674 6473.090 9969.367
#> Feb 1979 7729.387 6114.349 9632.456
#> Mar 1979 7792.193 6132.693 9821.170
#> Apr 1979 8192.800 6448.504 10084.277
#> May 1979 8829.029 7247.419 10818.663
#> Jun 1979 9401.282 7554.712 11260.581
#> Jul 1979 9962.968 8359.314 11814.882
#> Aug 1979 9748.157 8005.109 11577.599
#> Sep 1979 9388.119 7739.654 11305.827
#> Oct 1979 9136.904 7200.491 10908.398
#> Nov 1979 8821.085 7242.572 10445.693
#> Dec 1979 9068.206 6963.608 11055.792
#> Jan 1980 8340.255 6799.574 10256.971
#> Feb 1980 8023.531 6147.344 9887.678
#> Mar 1980 7968.533 6055.050 9964.622
plot(res)