mlarchf.Rd
Conformalized Forecasting using Machine Learning models with ARCH effects
mlarchf(
y,
h = 10L,
mean_model = forecast::auto.arima,
model_residuals = forecast::thetaf,
fit_func = ahead::ridge,
predict_func = predict,
type_pi = c("kde", "surrogate", "bootstrap"),
type_sim_conformalize = c("block-bootstrap", "surrogate", "kde", "bootstrap",
"fitdistr"),
ml_method = NULL,
level = 95,
B = 250L
)
A numeric vector or time series of class ts
Forecasting horizon
Function to fit the mean model (default: forecast::auto.arima
)
Function to model the residuals (default: forecast::thetaf
)
Fitting function for the variance model (default: ahead::ridge
)
Prediction function for the variance model (default: predict
)
Type of prediction interval ("kde", "surrogate", or "bootstrap") for volatility modeling
Type of simulation for conformalization of standardized residuals ("block-bootstrap", "surrogate", "kde", "bootstrap", or "fitdistr")
Machine learning method to use (if NULL, uses default methods)
Confidence level for prediction intervals
Number of bootstrap replications or simulations
A forecast object containing predictions and prediction intervals
# Example usage will be added