mlarchf.Rd
Conformalized Forecasting using Machine Learning (and statistical) models with ARCH effects
mlarchf(
y,
h = 10L,
mean_model = forecast::auto.arima,
model_residuals = forecast::thetaf,
fit_func = ahead::ridge,
predict_func = predict,
type_pi = c("surrogate", "bootstrap", "kde"),
type_sim_conformalize = c("surrogate", "block-bootstrap", "bootstrap", "kde",
"fitdistr"),
ml_method = NULL,
level = 95,
B = 250L,
ml = TRUE,
stat_model = NULL,
...
)
A numeric vector or time series of class ts
Forecasting horizon
Function to fit the mean model (default: forecast::auto.arima
)
Function to model the residuals (default: forecast::thetaf
)
Fitting function for the variance model (default: ahead::ridge
)
Prediction function for the variance model (default: predict
)
Type of prediction interval ("kde", "surrogate", or "bootstrap") for volatility modeling
Type of simulation for conformalization of standardized residuals ("block-bootstrap", "surrogate", "kde", "bootstrap", or "fitdistr")
caret package Machine learning method to use, if fit_func
and predict_func
aren't provided.
If NULL, uses fit_func
and predict_func
.
Confidence level for prediction intervals
Number of bootstrap replications or simulations
If TRUE
, fit_func
and predict_func
are used, otherwise a statistical model in stat_model
A statistical model, e.g forecast::thetaf
or forecast::auto.arima
Additional parameters to be passed to stat_model
A forecast object containing predictions and prediction intervals
# Example usage will be added