intro_S3_boosterCpp.Rmd
The tisthemachinelearner
package provides a simple R
interface to scikit-learn models through Python’s
tisthemachinelearner
package. This vignette demonstrates
how to use the package with R’s built-in mtcars
dataset.
First, let’s load the required packages:
library(tisthemachinelearner)
#> Loading required package: reticulate
#> Loading required package: Matrix
library(reticulate)
We’ll use the classic mtcars
dataset to predict miles
per gallon (mpg) based on other car characteristics:
# Load data
# Split features and target
X <- as.matrix(MASS::Boston[, -14]) # all columns except mpg
y <- MASS::Boston[, 14] # mpg column
# Create train/test split
set.seed(42)
train_idx <- sample(nrow(X), size = floor(0.8 * nrow(X)))
X_train <- X[train_idx, ]
X_test <- X[-train_idx, ]
y_train <- y[train_idx]
y_test <- y[-train_idx]
Now let’s try Ridge regression with cross-validation for hyperparameter tuning:
# Fit booster model
time <- proc.time()[3]
reg_booster <- tisthemachinelearner::booster(X_train, y_train, "ExtraTreeRegressor",
n_estimators = 100L,
learning_rate = 0.1,
show_progress = FALSE,
verbose = FALSE)
time <- proc.time()[3] - time
cat("Time taken:", time, "seconds\n")
#> Time taken: 69.821 seconds
# Make predictions
time <- proc.time()[3]
predictions <- predict(reg_booster, X_test)
time <- proc.time()[3] - time
cat("Time taken:", time, "seconds\n")
#> Time taken: 0.083 seconds
# RMSE
rmse <- sqrt(mean((y_test - predictions)^2))
cat("RMSE:", rmse, "\n")
#> RMSE: 2.959267
sessionInfo()
#> R version 4.3.3 (2024-02-29)
#> Platform: x86_64-apple-darwin20 (64-bit)
#> Running under: macOS Sonoma 14.2
#>
#> Matrix products: default
#> BLAS: /Library/Frameworks/R.framework/Versions/4.3-x86_64/Resources/lib/libRblas.0.dylib
#> LAPACK: /Library/Frameworks/R.framework/Versions/4.3-x86_64/Resources/lib/libRlapack.dylib; LAPACK version 3.11.0
#>
#> locale:
#> [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
#>
#> time zone: Europe/Paris
#> tzcode source: internal
#>
#> attached base packages:
#> [1] stats graphics grDevices utils datasets methods base
#>
#> other attached packages:
#> [1] tisthemachinelearner_0.3.0 Matrix_1.6-5
#> [3] reticulate_1.42.0
#>
#> loaded via a namespace (and not attached):
#> [1] cli_3.6.4 knitr_1.49 rlang_1.1.6 xfun_0.51
#> [5] png_0.1-8 textshaping_1.0.0 jsonlite_2.0.0 htmltools_0.5.8.1
#> [9] ragg_1.3.3 sass_0.4.9 rmarkdown_2.29 grid_4.3.3
#> [13] evaluate_1.0.3 jquerylib_0.1.4 MASS_7.3-60.0.1 fastmap_1.2.0
#> [17] yaml_2.3.10 lifecycle_1.0.4 compiler_4.3.3 fs_1.6.5
#> [21] htmlwidgets_1.6.4 Rcpp_1.0.14 systemfonts_1.1.0 lattice_0.22-5
#> [25] digest_0.6.37 R6_2.6.1 bslib_0.9.0 tools_4.3.3
#> [29] pkgdown_2.1.1 cachem_1.1.0 desc_1.4.3