Parameters' description can be found at https://techtonique.github.io/nnetsauce/

Ridge2MultitaskClassifier(
  n_hidden_features = 5L,
  activation_name = "relu",
  a = 0.01,
  nodes_sim = "sobol",
  bias = TRUE,
  dropout = 0,
  n_clusters = 2L,
  cluster_encode = TRUE,
  type_clust = "kmeans",
  lambda1 = 0.1,
  lambda2 = 0.1,
  seed = 123L,
  backend = c("cpu", "gpu", "tpu")
)

Examples


# Example 1 -----

library(datasets)

X <- as.matrix(iris[, 1:4])
y <- as.integer(iris[, 5]) - 1L

(index_train <- base::sample.int(n = nrow(X),
                                 size = floor(0.8*nrow(X)),
                                 replace = FALSE))
#>   [1]  89 143 123  35  30  69 130  23  21  19 137 104  32  48  15 147  55 125
#>  [19]  17  71  77  13  78  68  25  29  53  16  41 112   9  37  54  86 110 108
#>  [37] 117  24  14 146 109  62  40  95  39 101  72 121 140  65 149  26  46 100
#>  [55] 107  63 142  81 106 131  45  47  76  98  83  60 114 132 120  97  31  38
#>  [73]  33  85 139   5  96 122 119  87 148   6  52  91   8  43 134 127 113  75
#>  [91] 103 128   1  88 135   4  56  67  18  10  12 102   3  99  50  57  66  84
#> [109]  61 141  79 138   2 105  44  74 150 111  73  42
X_train <- X[index_train, ]
y_train <- y[index_train]
X_test <- X[-index_train, ]
y_test <- y[-index_train]

obj <- Ridge2MultitaskClassifier()
obj$fit(X_train, y_train)
#> Error in py_call_impl(callable, call_args$unnamed, call_args$named): AttributeError: 'list' object has no attribute 'dtype'
#> Run `reticulate::py_last_error()` for details.
print(obj$score(X_test, y_test))
#> Error in py_call_impl(callable, call_args$unnamed, call_args$named): AttributeError: 'NoneType' object has no attribute 'predict'
#> Run `reticulate::py_last_error()` for details.
print(obj$predict_proba(X_train))
#> Error in py_call_impl(callable, call_args$unnamed, call_args$named): AttributeError: 'NoneType' object has no attribute 'predict'
#> Run `reticulate::py_last_error()` for details.