Ridge2Classifier.Rd
Parameters' description can be found at https://techtonique.github.io/nnetsauce/
Ridge2Classifier(
n_hidden_features = 5L,
activation_name = "relu",
a = 0.01,
nodes_sim = "sobol",
bias = TRUE,
dropout = 0,
direct_link = TRUE,
n_clusters = 2L,
cluster_encode = TRUE,
type_clust = "kmeans",
lambda1 = 0.1,
lambda2 = 0.1,
seed = 123L,
backend = c("cpu", "gpu", "tpu")
)
library(datasets)
X <- as.matrix(iris[, 1:4])
y <- as.integer(iris[, 5]) - 1L
(index_train <- base::sample.int(n = nrow(X),
size = floor(0.8*nrow(X)),
replace = FALSE))
#> [1] 99 35 26 13 36 28 44 54 29 93 147 116 5 56 77 92 72 126
#> [19] 75 87 94 48 15 65 143 108 10 86 42 100 41 25 130 52 37 27
#> [37] 73 83 149 34 63 131 76 79 49 112 142 71 141 45 111 114 47 1
#> [55] 124 120 95 39 109 6 32 61 80 16 2 121 78 30 145 58 113 102
#> [73] 70 68 67 46 59 129 96 82 125 97 144 106 33 146 51 140 50 128
#> [91] 110 132 88 55 18 136 62 107 148 127 64 3 119 11 81 135 98 38
#> [109] 90 31 139 123 22 17 138 89 122 115 43 118
X_train <- X[index_train, ]
y_train <- y[index_train]
X_test <- X[-index_train, ]
y_test <- y[-index_train]
obj <- Ridge2Classifier()
obj$fit(X_train, y_train)
#> Error in py_call_impl(callable, call_args$unnamed, call_args$named): AttributeError: 'list' object has no attribute 'dtype'
#> Run `reticulate::py_last_error()` for details.
print(obj$score(X_test, y_test))
#> Error in py_call_impl(callable, call_args$unnamed, call_args$named): AttributeError: 'NoneType' object has no attribute 'predict'
#> Run `reticulate::py_last_error()` for details.
print(obj$predict_proba(X_train))
#> Error in py_call_impl(callable, call_args$unnamed, call_args$named): AttributeError: 'NoneType' object has no attribute 'predict'
#> Run `reticulate::py_last_error()` for details.