LazyDeepRegressor.Rd
See also https://techtonique.github.io/nnetsauce/
LazyDeepRegressor(
verbose = 0,
ignore_warnings = TRUE,
custom_metric = NULL,
predictions = FALSE,
random_state = 42L,
estimators = "all",
preprocess = FALSE,
n_layers = 3L,
...
)
monitor progress (0
, default, is false and 1
is true)
print trace when model fitting failed
defining a custom metric (default is NULL
)
obtain predictions (default is FALSE
)
reproducibility seed
specify regressors to be adjusted (default is 'all')
preprocessing input covariates (default is FALSE FALSE
)
number of layers for the deep model
additional parameters to be passed to nnetsauce::CustomRegressor
a list that you can $fit
X <- MASS::Boston[,-14] # dataset has an ethical problem
y <- MASS::Boston$medv
set.seed(13)
(index_train <- base::sample.int(n = nrow(X),
size = floor(0.8*nrow(X)),
replace = FALSE))
#> [1] 472 259 448 357 74 205 262 432 406 132 320 221 248 337 384 362 399 55
#> [19] 279 5 396 305 54 184 32 482 125 47 81 444 485 267 68 376 87 334
#> [37] 61 373 131 223 387 197 446 324 66 385 62 307 127 371 374 60 476 332
#> [55] 440 222 298 182 318 119 15 157 113 14 441 377 160 287 402 381 435 465
#> [73] 210 78 455 333 129 232 361 97 415 304 490 190 124 303 136 398 139 105
#> [91] 340 273 153 224 147 309 7 329 91 90 46 9 164 468 101 487 313 246
#> [109] 67 326 49 264 423 116 170 1 302 442 414 103 437 57 314 355 237 451
#> [127] 154 86 53 123 31 460 452 311 383 226 322 277 130 405 109 295 212 421
#> [145] 317 200 20 99 16 386 498 165 489 84 495 478 291 134 436 348 316 58
#> [163] 126 328 12 217 420 203 339 64 471 73 494 458 502 434 135 100 177 204
#> [181] 285 209 82 143 215 159 183 196 216 315 346 22 25 172 233 352 412 231
#> [199] 359 416 380 354 236 500 319 240 251 13 2 464 35 417 456 121 390 201
#> [217] 418 401 77 18 475 486 146 241 299 244 114 447 503 149 424 228 275 477
#> [235] 33 330 111 207 301 92 335 50 454 388 137 505 150 404 351 438 202 430
#> [253] 96 484 327 162 431 155 282 499 496 270 235 479 158 419 56 457 189 397
#> [271] 239 108 79 166 363 40 245 409 283 450 341 462 156 44 280 422 501 342
#> [289] 191 370 144 269 194 185 429 392 306 358 199 85 94 181 186 349 80 145
#> [307] 43 161 375 331 229 175 426 408 238 344 379 110 72 343 93 413 174 308
#> [325] 480 59 234 128 151 169 104 167 242 470 473 297 179 278 107 83 102 51
#> [343] 133 247 19 353 118 289 98 4 284 443 214 288 336 117 300 17 30 378
#> [361] 463 293 365 491 497 400 323 26 266 428 29 28 389 198 372 70 286 411
#> [379] 321 410 350 265 173 176 459 488 369 220 192 211 115 37 338 481 493 445
#> [397] 206 48 347 27 258 6 274 142
X_train <- X[index_train, ]
y_train <- y[index_train]
X_test <- X[-index_train, ]
y_test <- y[-index_train]
obj <- LazyDeepRegressor()
res <- obj$fit(X_train, X_test, y_train, y_test)
print(res[[1]])
#> [1] 0.8526364 0.8514566