DeepMTS.Rd
See also https://techtonique.github.io/nnetsauce/
DeepMTS(
obj,
n_layers = 3L,
n_hidden_features = 5L,
activation_name = "relu",
a = 0.01,
nodes_sim = "sobol",
bias = TRUE,
dropout = 0,
direct_link = TRUE,
n_clusters = 2L,
cluster_encode = TRUE,
type_clust = "kmeans",
lags = 1L,
replications = NULL,
kernel = NULL,
agg = "mean",
seed = 123L,
backend = c("cpu", "gpu", "tpu"),
verbose = 0,
...
)
a model object
number of hidden layers
additional parameters to be passed to nnetsauce::CustomRegressor
set.seed(123)
X <- matrix(rnorm(300), 100, 3)
obj <- sklearn$linear_model$ElasticNet()
obj2 <- DeepMTS(obj)
obj2$fit(X)
#> DeepMTS(dropout=0.0,
#> obj=CustomRegressor(dropout=0.0,
#> obj=CustomRegressor(dropout=0.0, obj=ElasticNet())),
#> verbose=0.0)
obj2$predict()
#> series0 series1 series2
#> 1 0.09698047 -0.1014573 0.09947172
#> 2 0.09698047 -0.1014573 0.09947172
#> 3 0.09698047 -0.1014573 0.09947172
#> 4 0.09698047 -0.1014573 0.09947172
#> 5 0.09698047 -0.1014573 0.09947172