regressor.Rd
Create a regression model using tisthemachinelearner
regressor(x, y, model_name, calibration = FALSE, seed = 42, ...)
A regressor object
# Split features and target
X <- as.matrix(mtcars[, -1]) # all columns except mpg
y <- mtcars[, 1] # mpg column
# Create train/test split
set.seed(42)
train_idx <- sample(nrow(mtcars), size = floor(0.8 * nrow(mtcars)))
X_train <- X[train_idx, ]
X_test <- X[-train_idx, ]
y_train <- y[train_idx]
y_test <- y[-train_idx]
# Fit linear regression model
reg_linear <- regressor(X_train, y_train, "LinearRegression")
# Make predictions
predictions <- predict(reg_linear, X_test)
# Calculate RMSE
(rmse <- sqrt(mean((predictions - y_test)^2)))
#> [1] 4.876167