library(misc)

Example: Conformal Prediction with Out-of-Sample Coverage

In this example, we demonstrate how to use the conformalize function to perform conformal prediction and calculate the out-of-sample coverage rate.

Simulated Data

We will generate a simple dataset for demonstration purposes.

set.seed(123)
n <- 200
x <- matrix(runif(n * 2), ncol = 2)
y <- 3 * x[, 1] + 2 * x[, 2] + rnorm(n, sd = 0.5)
data <- data.frame(x1 = x[, 1], x2 = x[, 2], y = y)

Fit Conformal Model

We will use a linear model (lm) as the fit_func and its corresponding predict function as the predict_func.

library(stats)

# Define fit and predict functions
fit_func <- function(formula, data, ...) lm(formula, data = data, ...)
predict_func <- function(fit, newdata, ...) predict(fit, newdata = newdata, ...)

# Apply conformalize
conformal_model <- misc::conformalize(
  formula = y ~ x1 + x2,
  data = data,
  fit_func = fit_func,
  predict_func = predict_func,
  split_ratio = 0.8,
  seed = 123
)

Generate Predictions and Prediction Intervals

We will use the predict.conformalize method to generate predictions and calculate prediction intervals.

# New data for prediction
new_data <- data.frame(x1 = runif(50), x2 = runif(50))

# Predict with split conformal method
predictions <- predict(
  conformal_model,
  newdata = new_data,
  level = 0.95,
  method = "split"
)

head(predictions)
##         fit        lwr      upr
## 1 1.6023773  0.5217324 2.683022
## 2 2.4634938  1.3828489 3.544139
## 3 0.6216433 -0.4590017 1.702288
## 4 0.9257140 -0.1549310 2.006359
## 5 2.0106565  0.9300115 3.091301
## 6 0.7427247 -0.3379203 1.823370

Calculate Out-of-Sample Coverage Rate

The coverage rate is the proportion of true values that fall within the prediction intervals.

# Simulate true values for the new data
true_y <- 3 * new_data$x1 + 2 * new_data$x2 + rnorm(50, sd = 0.5)

# Check if true values fall within the prediction intervals
coverage <- mean(true_y >= predictions[, "lwr"] & true_y <= predictions[, "upr"])

cat("Out-of-sample coverage rate:", coverage)
## Out-of-sample coverage rate: 0.98

Results

  • The prediction intervals are calculated using the split conformal method.
  • The out-of-sample coverage rate is displayed, which should be close to the specified confidence level (e.g., 0.95).

Example: Conformal Prediction with the MASS::Boston Dataset

In this example, we use the MASS::Boston dataset to demonstrate conformal prediction.

Load the Data

We will use the MASS package to access the Boston dataset.

library(MASS)

# Load the Boston dataset
data(Boston)

# Inspect the dataset
head(Boston)
##      crim zn indus chas   nox    rm  age    dis rad tax ptratio  black lstat
## 1 0.00632 18  2.31    0 0.538 6.575 65.2 4.0900   1 296    15.3 396.90  4.98
## 2 0.02731  0  7.07    0 0.469 6.421 78.9 4.9671   2 242    17.8 396.90  9.14
## 3 0.02729  0  7.07    0 0.469 7.185 61.1 4.9671   2 242    17.8 392.83  4.03
## 4 0.03237  0  2.18    0 0.458 6.998 45.8 6.0622   3 222    18.7 394.63  2.94
## 5 0.06905  0  2.18    0 0.458 7.147 54.2 6.0622   3 222    18.7 396.90  5.33
## 6 0.02985  0  2.18    0 0.458 6.430 58.7 6.0622   3 222    18.7 394.12  5.21
##   medv
## 1 24.0
## 2 21.6
## 3 34.7
## 4 33.4
## 5 36.2
## 6 28.7

Split the Data

We will split the data into training and test sets to ensure they are disjoint.

set.seed(123)
n <- nrow(Boston)
train_indices <- sample(seq_len(n), size = floor(0.8 * n))
train_data <- Boston[train_indices, ]
test_data <- Boston[-train_indices, ]

Fit Conformal Model 1

# Define fit and predict functions
fit_func <- function(formula, data, ...) MASS::rlm(formula, data = data, ...)
predict_func <- function(fit, newdata, ...) predict(fit, newdata, ...)

# Apply conformalize using the training data
conformal_model_boston <- misc::conformalize(
  formula = medv ~ .,
  data = train_data,
  fit_func = fit_func,
  predict_func = predict_func,
  seed = 123
)

Generate Predictions and Prediction Intervals 1

We will use the predict.conformalize method to generate predictions and calculate prediction intervals for the test set.

# Predict with split conformal method on the test data
predictions_boston <- predict(
  conformal_model_boston,
  newdata = test_data,
  level = 0.95,
  method = "split"
)

head(predictions_boston)
##         fit       lwr      upr
## 1  29.92942 20.263283 39.59556
## 15 19.30837  9.642229 28.97451
## 17 20.71124 11.045100 30.37738
## 19 14.86650  5.200365 24.53264
## 28 14.79883  5.132688 24.46497
## 37 20.98752 11.321382 30.65366

Calculate Out-of-Sample Coverage Rate 1

The coverage rate is the proportion of true values in the test set that fall within the prediction intervals.

# True values for the test set
true_y_boston <- test_data$medv

# Check if true values fall within the prediction intervals
coverage_boston <- mean(true_y_boston >= predictions_boston[, "lwr"] & true_y_boston <= predictions_boston[, "upr"])

cat("Out-of-sample coverage rate for Boston dataset:", coverage_boston)
## Out-of-sample coverage rate for Boston dataset: 0.9509804

Fit Conformal Model 2

# Define fit and predict functions
fit_func <- function(formula, data, ...) stats::glm(formula, data = data, ...)
predict_func <- function(fit, newdata, ...) predict(fit, newdata, ...)

# Apply conformalize using the training data
conformal_model_boston <- misc::conformalize(
  formula = medv ~ .,
  data = train_data,
  fit_func = fit_func,
  predict_func = predict_func,
  seed = 123
)

Generate Predictions and Prediction Intervals 2

We will use the predict.conformalize method to generate predictions and calculate prediction intervals for the test set.

# Predict with split conformal method on the test data
predictions_boston <- predict(
  conformal_model_boston,
  newdata = test_data,
  level = 0.95,
  method = "split"
)

head(predictions_boston)
##         fit       lwr      upr
## 1  30.39434 21.864586 38.92410
## 15 19.10867 10.578908 27.63842
## 17 19.48015 10.950390 28.00990
## 19 14.18587  5.656113 22.71563
## 28 13.85324  5.323482 22.38300
## 37 21.66451 13.134753 30.19427
# Predict with split conformal method on the test data
predictions_boston2 <- predict(
  conformal_model_boston,
  newdata = test_data,
  level = 0.95,
  method = "kde"
)

head(predictions_boston2)
##         fit      lwr      upr
## 1  30.39434 22.37589 49.43768
## 15 19.10867 11.96002 28.22319
## 17 19.48015 11.91617 34.06139
## 19 14.18587  6.77628 23.56133
## 28 13.85324  6.61761 27.71907
## 37 21.66451 13.49167 37.83532
# Predict with split conformal method on the test data
predictions_boston3 <- predict(
  conformal_model_boston,
  newdata = test_data,
  level = 0.95,
  method = "surrogate"
)
## Registered S3 method overwritten by 'quantmod':
##   method            from
##   as.zoo.data.frame zoo
head(predictions_boston3)
##         fit       lwr      upr
## 1  30.39434 22.482206 39.30623
## 15 19.10867 12.073048 31.40162
## 17 19.48015 12.698948 34.93286
## 19 14.18587  7.396239 29.63858
## 28 13.85324  6.134993 22.68221
## 37 21.66451 14.614108 33.95747
# Predict with split conformal method on the test data
predictions_boston4 <- predict(
  conformal_model_boston,
  newdata = test_data,
  level = 0.95,
  method = "bootstrap"
)

head(predictions_boston4)
##         fit       lwr      upr
## 1  30.39434 23.343942 45.84706
## 15 19.10867 11.055854 34.56138
## 17 19.48015 11.427336 33.98435
## 19 14.18587  6.133060 25.25477
## 28 13.85324  5.800429 21.80538
## 37 21.66451 13.611700 36.16871

Fit Conformal Model 2

# Define fit and predict functions
fit_func <- function(formula, data, ...) ranger::ranger(formula, data = data)
predict_func <- function(fit, newdata, ...) predict(fit, newdata)$predictions

# Apply conformalize using the training data
conformal_model_boston_rf <- misc::conformalize(
  formula = medv ~ .,
  data = train_data,
  fit_func = fit_func,
  predict_func = predict_func,
  seed = 123
)

# Predict with split conformal method on the test data
predictions_boston_rf <- predict(
  conformal_model_boston_rf,
  newdata = test_data,
  predict_func = predict_func,
  level = 0.95,
  method = "kde"
)

head(predictions_boston_rf)
##           fit       lwr      upr
## [1,] 27.03134 21.991838 32.43038
## [2,] 19.20299 13.542260 25.05314
## [3,] 21.34472 17.000993 30.77696
## [4,] 18.77455 12.341589 25.88818
## [5,] 15.60764  9.157478 21.48264
## [6,] 21.31355 14.591954 29.75374

Calculate Out-of-Sample Coverage Rate 2

The coverage rate is the proportion of true values in the test set that fall within the prediction intervals.

# True values for the test set
true_y_boston <- test_data$medv

# Check if true values fall within the prediction intervals
coverage_boston <- mean(true_y_boston >= predictions_boston[, "lwr"] & true_y_boston <= predictions_boston[, "upr"])

cat("Out-of-sample coverage rate for Boston dataset:", coverage_boston)
## Out-of-sample coverage rate for Boston dataset: 0.9411765
# True values for the test set
true_y_boston <- test_data$medv

# Check if true values fall within the prediction intervals
coverage_boston <- mean(true_y_boston >= predictions_boston2[, "lwr"] & true_y_boston <= predictions_boston2[, "upr"])

cat("Out-of-sample coverage rate for Boston dataset:", coverage_boston)
## Out-of-sample coverage rate for Boston dataset: 0.9607843
# True values for the test set
true_y_boston <- test_data$medv

# Check if true values fall within the prediction intervals
coverage_boston <- mean(true_y_boston >= predictions_boston3[, "lwr"] & true_y_boston <= predictions_boston3[, "upr"])

cat("Out-of-sample coverage rate for Boston dataset:", coverage_boston)
## Out-of-sample coverage rate for Boston dataset: 0.9705882
# True values for the test set
true_y_boston <- test_data$medv

# Check if true values fall within the prediction intervals
coverage_boston <- mean(true_y_boston >= predictions_boston4[, "lwr"] & true_y_boston <= predictions_boston4[, "upr"])

cat("Out-of-sample coverage rate for Boston dataset:", coverage_boston)
## Out-of-sample coverage rate for Boston dataset: 0.9607843
# True values for the test set
true_y_boston <- test_data$medv

# Check if true values fall within the prediction intervals
coverage_boston <- mean(true_y_boston >= predictions_boston_rf[, "lwr"] & true_y_boston <= predictions_boston_rf[, "upr"])

cat("Out-of-sample coverage rate for Boston dataset:", coverage_boston)
## Out-of-sample coverage rate for Boston dataset: 0.9215686

Results

  • The prediction intervals are calculated using the split conformal method.
  • The out-of-sample coverage rate is displayed, which should be close to the specified confidence level (e.g., 0.95).