dynupdate.Rd
Performs dynamic updating of functional time series forecasts using various methods.
dynupdate(
data,
newdata = NULL,
holdoutdata,
method = c("ts", "block", "ols", "pls", "ridge"),
fmethod = c("arima", "ar", "ets", "ets.na", "rwdrift", "rw"),
pcdmethod = c("classical", "M", "rapca"),
ngrid = max(1000, ncol(data$y)),
order = 6,
robust_lambda = 2.33,
lambda = 0.01,
value = FALSE,
interval = FALSE,
level = 80,
pimethod = c("parametric", "nonparametric"),
B = 1000
)
A functional time series object of class fts
.
New observations to incorporate in the forecast.
Holdout data for validation.
Update method: "ts", "block", "ols", "pls", or "ridge".
Forecasting method: "arima", "ar", "ets", "ets.na", "rwdrift", or "rw".
Functional PCA method: "classical", "M", or "rapca".
Number of grid points for smoothing (default: max(1000, ncol(data$y))).
Number of principal components (default: 6).
Robustness parameter (default: 2.33).
Ridge regression parameter (default: 0.01).
Logical. If TRUE, return forecast values (default: FALSE).
Logical. If TRUE, compute prediction intervals (default: FALSE).
Confidence level for prediction intervals (default: 80).
Method for prediction intervals: "parametric" or "nonparametric".
Number of bootstrap replications (default: 1000).
If value=TRUE, returns forecast values. Otherwise, returns a list with error measures:
Mean squared error
Mean absolute error
Mean absolute percentage error
if (FALSE) { # \dontrun{
# Load example data
data(pm_10_GR)
# Perform dynamic update
result <- dynupdate(pm_10_GR, newdata = pm_10_GR$y[,1:10],
holdoutdata = pm_10_GR$y[,11:12], method = "pls")
} # }