ftsm.Rd
Fits a functional time series model using functional principal component analysis.
A functional time series object of class fts
.
Number of principal components to include in the model (default: 6).
Number of grid points for smoothing (default: max(500, ncol(y$y))).
Method for functional principal component analysis: "classical" (default), "M", or "rapca".
Logical. If TRUE, include mean function in the model (default: TRUE).
Logical. If TRUE, include level component in the model (default: FALSE).
Smoothing parameter for penalized splines (default: 3).
Logical. If TRUE, use weighted functional principal component analysis (default: FALSE).
Weight parameter for exponential weighting (default: 0.1).
Additional arguments passed to the functional PCA function.
An object of class ftsm
containing:
Time points
Grid points
Original functional time series
Basis functions (eigenfunctions)
Coefficients (scores)
Fitted values
Residuals
Proportion of variance explained by each component
Eigenvalues
Weights
Eigenvalues
Second set of basis functions
Second set of coefficients
Standard error of the mean function
Function call
Hyndman, R.J., & Shang, H.L. (2009). Forecasting functional time series. Journal of the Korean Statistical Society, 38(3), 199-221.
forecast.ftsm
, plot.ftsm
, summary.fm