bayes_opt.Rd
Bayesian optimization using surrogate models
bayes_opt(
objective,
lower,
upper,
type_acq = c("ei", "ucb"),
nb_init = 10L,
nb_iter = 90L,
kappa = 1.96,
method = c("standard", "direct_online", "polyak_online"),
surrogate_model = c("rvfl", "matern52", "rvfl_emcee", "rf"),
optim_surr = c("GCV", "loglik", "cv"),
activation_function = c("relu", "tanh", "sigmoid"),
type_optim = c("nlminb", "DEoptim", "msnlminb", "randsearch", "none"),
early_stopping = FALSE,
abs_tol = 1e-07,
rel_tol = 0.001,
seed = 123,
verbose = TRUE,
show_progress = TRUE,
...
)
function to be optimized
lower bound for search
upper bound for search
type of acquisition function
number of points in initial design
number of iterations of the algo
quantile for ucb
fit all, or online
surrogate model
surrogate hyperparams fitting
activation for bayesian rvfl
optim for acquisition (nlminb, DEoptim, msnlminb, randsearch, none)
if TRUE, the algorithm will stop if the acquisition function is below a certain threshold
absolute tolerance for early stopping
relative tolerance for early stopping
seed for random number generation
if TRUE, the algorithm will print progress messages
if TRUE, the algorithm will show a progress bar