Bayesian optimization using surrogate models

bayes_opt(
  objective,
  lower,
  upper,
  type_acq = c("ei", "ucb"),
  nb_init = 10L,
  nb_iter = 90L,
  kappa = 1.96,
  method = c("standard", "direct_online", "polyak_online"),
  surrogate_model = c("rvfl", "matern52", "rvfl_emcee", "rf"),
  optim_surr = c("GCV", "loglik", "cv"),
  activation_function = c("relu", "tanh", "sigmoid"),
  type_optim = c("nlminb", "DEoptim", "msnlminb", "randsearch", "none"),
  early_stopping = FALSE,
  abs_tol = 1e-07,
  rel_tol = 0.001,
  seed = 123,
  verbose = TRUE,
  show_progress = TRUE,
  ...
)

Arguments

objective

function to be optimized

lower

lower bound for search

upper

upper bound for search

type_acq

type of acquisition function

nb_init

number of points in initial design

nb_iter

number of iterations of the algo

kappa

quantile for ucb

method

fit all, or online

surrogate_model

surrogate model

optim_surr

surrogate hyperparams fitting

activation_function

activation for bayesian rvfl

type_optim

optim for acquisition (nlminb, DEoptim, msnlminb, randsearch, none)

early_stopping

if TRUE, the algorithm will stop if the acquisition function is below a certain threshold

abs_tol

absolute tolerance for early stopping

rel_tol

relative tolerance for early stopping

seed

seed for random number generation

verbose

if TRUE, the algorithm will print progress messages

show_progress

if TRUE, the algorithm will show a progress bar

...