get_model_list.Rd
This function retrieves a list of all models available in scikit-learn. It imports the necessary Python modules and retrieves all estimators, filtering them into classifiers and regressors.
get_model_list()
A list with two elements: - `classifiers`: A character vector of all classifier models - `regressors`: A character vector of all regressor models
model_list <- get_model_list()
print(model_list$classifiers)
#> [1] "AdaBoostClassifier" "BaggingClassifier"
#> [3] "BernoulliNB" "CalibratedClassifierCV"
#> [5] "CategoricalNB" "ClassifierChain"
#> [7] "ComplementNB" "DecisionTreeClassifier"
#> [9] "DummyClassifier" "ExtraTreeClassifier"
#> [11] "ExtraTreesClassifier" "FixedThresholdClassifier"
#> [13] "GaussianNB" "GaussianProcessClassifier"
#> [15] "GradientBoostingClassifier" "HistGradientBoostingClassifier"
#> [17] "KNeighborsClassifier" "LabelPropagation"
#> [19] "LabelSpreading" "LinearDiscriminantAnalysis"
#> [21] "LinearSVC" "LogisticRegression"
#> [23] "LogisticRegressionCV" "MLPClassifier"
#> [25] "MultiOutputClassifier" "MultinomialNB"
#> [27] "NearestCentroid" "NuSVC"
#> [29] "OneVsOneClassifier" "OneVsRestClassifier"
#> [31] "OutputCodeClassifier" "PassiveAggressiveClassifier"
#> [33] "Perceptron" "QuadraticDiscriminantAnalysis"
#> [35] "RadiusNeighborsClassifier" "RandomForestClassifier"
#> [37] "RidgeClassifier" "RidgeClassifierCV"
#> [39] "SGDClassifier" "SVC"
#> [41] "SelfTrainingClassifier" "StackingClassifier"
#> [43] "TunedThresholdClassifierCV" "VotingClassifier"