MultitaskClassifier.Rd
Parameters description can be found at https://techtonique.github.io/nnetsauce/
MultitaskClassifier(
obj,
n_hidden_features = 5L,
activation_name = "relu",
a = 0.01,
nodes_sim = "sobol",
bias = TRUE,
dropout = 0,
direct_link = TRUE,
n_clusters = 2L,
cluster_encode = TRUE,
type_clust = "kmeans",
col_sample = 1,
row_sample = 1,
seed = 123L,
backend = c("cpu", "gpu", "tpu")
)
library(datasets)
X <- as.matrix(iris[, 1:4])
y <- as.integer(iris[, 5]) - 1L
(index_train <- base::sample.int(n = nrow(X),
size = floor(0.8*nrow(X)),
replace = FALSE))
#> [1] 137 139 43 115 55 57 126 38 84 63 78 70 130 120 75 21 87 72
#> [19] 59 81 146 6 128 111 28 32 49 99 92 127 142 65 69 136 47 20
#> [37] 2 62 112 141 113 10 132 124 7 61 143 36 23 34 88 4 54 29
#> [55] 58 134 117 56 51 50 48 3 33 101 66 64 40 96 147 140 25 71
#> [73] 150 105 22 93 100 85 53 31 46 24 60 30 102 17 26 108 145 110
#> [91] 148 86 73 103 45 8 15 77 94 89 39 74 104 52 83 144 149 119
#> [109] 121 90 109 41 138 1 16 114 14 12 44 91
X_train <- X[index_train, ]
y_train <- y[index_train]
X_test <- X[-index_train, ]
y_test <- y[-index_train]
obj <- sklearn$linear_model$LinearRegression()
obj2 <- MultitaskClassifier(obj)
obj2$fit(X_train, y_train)
#> MultitaskClassifier(col_sample=1.0, dropout=0.0, obj=LinearRegression(),
#> row_sample=1.0)
print(obj2$score(X_test, y_test))
#> [1] 1
print(obj2$predict_proba(X_test))
#> [,1] [,2] [,3]
#> [1,] 0.4223188 0.2966922 0.2809890
#> [2,] 0.4223188 0.2828842 0.2947970
#> [3,] 0.4223188 0.2996851 0.2779961
#> [4,] 0.4223188 0.3008353 0.2768459
#> [5,] 0.4223188 0.2863899 0.2912913
#> [6,] 0.4223188 0.2842122 0.2934690
#> [7,] 0.4223188 0.2634565 0.3142247
#> [8,] 0.4223188 0.2866407 0.2910405
#> [9,] 0.4223188 0.3088012 0.2688800
#> [10,] 0.4223188 0.2750425 0.3026387
#> [11,] 0.2869856 0.3855759 0.3274385
#> [12,] 0.2906424 0.4442556 0.2651020
#> [13,] 0.2882608 0.4134792 0.2982599
#> [14,] 0.2871063 0.3892762 0.3236174
#> [15,] 0.2910604 0.4486035 0.2603361
#> [16,] 0.2895694 0.4319646 0.2784659
#> [17,] 0.2881746 0.4120433 0.2997821
#> [18,] 0.2884411 0.4163694 0.2951895
#> [19,] 0.2885608 0.4182123 0.2932270
#> [20,] 0.2905598 0.2660690 0.4433712
#> [21,] 0.2867108 0.3388675 0.3744217
#> [22,] 0.2884160 0.2956082 0.4159758
#> [23,] 0.2899451 0.2735723 0.4364826
#> [24,] 0.2872885 0.3185449 0.3941666
#> [25,] 0.2904965 0.2668173 0.4426862
#> [26,] 0.2880809 0.3014815 0.4104376
#> [27,] 0.2888104 0.2893011 0.4218884
#> [28,] 0.2882207 0.2989644 0.4128149
#> [29,] 0.2894152 0.2805548 0.4300300
#> [30,] 0.2866530 0.3423594 0.3709876