Skip to contents

Predict from Matern 3/2 model

Usage

# S3 method for class 'matern32'
predict(
  fit_obj,
  newx,
  level = NULL,
  method = c("splitconformal", "kde", "surrogate", "bootstrap"),
  nsim = 250L,
  B = nsim
)

Arguments

fit_obj

Fitted object from fit_matern32

newx

New data matrix

level

Confidence level for prediction intervals (between 0 and 100)

method

Method to use for prediction intervals

nsim

Number of simulations to use for prediction

B

Alias for nsim

Examples


n <- 100 ; p <- 4

set.seed(456)
X <- matrix(rnorm(n * p), n, p) # no intercept!
y <- rnorm(n)

lams <- 10^seq(-10, 10, length.out = 50)

fit_obj <- fit_matern32(x = X, y = y, lambda = lams)

df <- data.frame(predict(fit_obj, X) - y)
colnames(df) <- paste0(round(lams, 2))
summary(df)
#>        0                    0                    0             
#>  Min.   :-1.511e-08   Min.   :-3.868e-08   Min.   :-9.901e-08  
#>  1st Qu.:-7.327e-10   1st Qu.:-1.875e-09   1st Qu.:-4.800e-09  
#>  Median : 5.513e-11   Median : 1.410e-10   Median : 3.611e-10  
#>  Mean   :-9.290e-13   Mean   :-2.400e-12   Mean   :-5.970e-12  
#>  3rd Qu.: 7.478e-10   3rd Qu.: 1.914e-09   3rd Qu.: 4.899e-09  
#>  Max.   : 1.341e-08   Max.   : 3.431e-08   Max.   : 8.782e-08  
#>        0                    0                    0             
#>  Min.   :-2.534e-07   Min.   :-6.487e-07   Min.   :-1.660e-06  
#>  1st Qu.:-1.229e-08   1st Qu.:-3.145e-08   1st Qu.:-8.049e-08  
#>  Median : 9.242e-10   Median : 2.365e-09   Median : 6.054e-09  
#>  Mean   :-1.539e-11   Mean   :-3.960e-11   Mean   :-1.017e-10  
#>  3rd Qu.: 1.254e-08   3rd Qu.: 3.210e-08   3rd Qu.: 8.215e-08  
#>  Max.   : 2.248e-07   Max.   : 5.754e-07   Max.   : 1.473e-06  
#>        0                    0                    0             
#>  Min.   :-4.250e-06   Min.   :-1.088e-05   Min.   :-2.784e-05  
#>  1st Qu.:-2.060e-07   1st Qu.:-5.273e-07   1st Qu.:-1.350e-06  
#>  Median : 1.550e-08   Median : 3.967e-08   Median : 1.015e-07  
#>  Mean   :-2.600e-10   Mean   :-6.660e-10   Mean   :-1.704e-09  
#>  3rd Qu.: 2.103e-07   3rd Qu.: 5.382e-07   3rd Qu.: 1.378e-06  
#>  Max.   : 3.769e-06   Max.   : 9.648e-06   Max.   : 2.469e-05  
#>        0                    0                    0             
#>  Min.   :-7.125e-05   Min.   :-1.823e-04   Min.   :-4.665e-04  
#>  1st Qu.:-3.455e-06   1st Qu.:-8.842e-06   1st Qu.:-2.263e-05  
#>  Median : 2.600e-07   Median : 6.662e-07   Median : 1.710e-06  
#>  Mean   :-4.360e-09   Mean   :-1.116e-08   Mean   :-2.860e-08  
#>  3rd Qu.: 3.526e-06   3rd Qu.: 9.024e-06   3rd Qu.: 2.310e-05  
#>  Max.   : 6.320e-05   Max.   : 1.617e-04   Max.   : 4.138e-04  
#>        0                    0                    0             
#>  Min.   :-1.193e-03   Min.   :-3.046e-03   Min.   :-7.747e-03  
#>  1st Qu.:-5.791e-05   1st Qu.:-1.482e-04   1st Qu.:-3.789e-04  
#>  Median : 4.406e-06   Median : 1.147e-05   Median : 3.062e-05  
#>  Mean   :-7.310e-08   Mean   :-1.867e-07   Mean   :-4.760e-07  
#>  3rd Qu.: 5.910e-05   3rd Qu.: 1.512e-04   3rd Qu.: 3.865e-04  
#>  Max.   : 1.058e-03   Max.   : 2.701e-03   Max.   : 6.870e-03  
#>        0                    0                    0             
#>  Min.   :-1.951e-02   Min.   :-4.799e-02   Min.   :-0.1116966  
#>  1st Qu.:-9.674e-04   1st Qu.:-2.461e-03   1st Qu.:-0.0060195  
#>  Median : 8.645e-05   Median : 2.708e-04   Median : 0.0009714  
#>  Mean   :-1.207e-06   Mean   :-3.020e-06   Mean   :-0.0000073  
#>  3rd Qu.: 9.858e-04   3rd Qu.: 2.502e-03   3rd Qu.: 0.0062749  
#>  Max.   : 1.730e-02   Max.   : 4.250e-02   Max.   : 0.0986614  
#>        0                   0.01                 0.01           
#>  Min.   :-2.322e-01   Min.   :-0.4029851   Min.   :-0.5704203  
#>  1st Qu.:-1.463e-02   1st Qu.:-0.0350340   1st Qu.:-0.0830885  
#>  Median : 3.162e-03   Median : 0.0070835   Median : 0.0132774  
#>  Mean   :-1.645e-05   Mean   :-0.0000321   Mean   :-0.0000425  
#>  3rd Qu.: 1.552e-02   3rd Qu.: 0.0388045   3rd Qu.: 0.0864749  
#>  Max.   : 2.039e-01   Max.   : 0.3490836   Max.   : 0.6732146  
#>       0.04                 0.1                  0.24          
#>  Min.   :-0.8349389   Min.   :-1.2203430   Min.   :-1.626056  
#>  1st Qu.:-0.1667309   1st Qu.:-0.2855362   1st Qu.:-0.421260  
#>  Median : 0.0245471   Median : 0.0659113   Median : 0.108845  
#>  Mean   : 0.0000362   Mean   : 0.0005033   Mean   : 0.001809  
#>  3rd Qu.: 0.1653571   3rd Qu.: 0.2722738   3rd Qu.: 0.393448  
#>  Max.   : 1.1607681   Max.   : 1.6344409   Max.   : 1.964242  
#>       0.63                1.6                 4.09               10.48         
#>  Min.   :-2.088143   Min.   :-2.404146   Min.   :-2.579385   Min.   :-2.69845  
#>  1st Qu.:-0.482777   1st Qu.:-0.536540   1st Qu.:-0.610570   1st Qu.:-0.68334  
#>  Median : 0.127733   Median : 0.134156   Median : 0.085328   Median : 0.09063  
#>  Mean   : 0.003522   Mean   : 0.002667   Mean   :-0.007627   Mean   :-0.03713  
#>  3rd Qu.: 0.511726   3rd Qu.: 0.527199   3rd Qu.: 0.536568   3rd Qu.: 0.55753  
#>  Max.   : 2.155172   Max.   : 2.266422   Max.   : 2.338769   Max.   : 2.37875  
#>      26.83              68.66              175.75            449.84       
#>  Min.   :-2.80314   Min.   :-2.89227   Min.   :-2.9528   Min.   :-2.9849  
#>  1st Qu.:-0.73921   1st Qu.:-0.80154   1st Qu.:-0.8412   1st Qu.:-0.8627  
#>  Median : 0.02021   Median :-0.05046   Median :-0.0906   Median :-0.1139  
#>  Mean   :-0.09043   Mean   :-0.15383   Mean   :-0.2034   Mean   :-0.2312  
#>  3rd Qu.: 0.53537   3rd Qu.: 0.50015   3rd Qu.: 0.4613   3rd Qu.: 0.4372  
#>  Max.   : 2.41512   Max.   : 2.41783   Max.   : 2.4027   Max.   : 2.3909  
#>      1151.4           2947.05           7543.12           19306.98      
#>  Min.   :-2.9994   Min.   :-3.0054   Min.   :-3.0078   Min.   :-3.0088  
#>  1st Qu.:-0.8726   1st Qu.:-0.8767   1st Qu.:-0.8783   1st Qu.:-0.8790  
#>  Median :-0.1286   Median :-0.1347   Median :-0.1372   Median :-0.1382  
#>  Mean   :-0.2440   Mean   :-0.2494   Mean   :-0.2515   Mean   :-0.2524  
#>  3rd Qu.: 0.4258   3rd Qu.: 0.4209   3rd Qu.: 0.4190   3rd Qu.: 0.4182  
#>  Max.   : 2.3850   Max.   : 2.3824   Max.   : 2.3813   Max.   : 2.3809  
#>     49417.13         126485.52         323745.75         828642.77      
#>  Min.   :-3.0092   Min.   :-3.0093   Min.   :-3.0094   Min.   :-3.0094  
#>  1st Qu.:-0.8792   1st Qu.:-0.8793   1st Qu.:-0.8794   1st Qu.:-0.8794  
#>  Median :-0.1386   Median :-0.1387   Median :-0.1388   Median :-0.1388  
#>  Mean   :-0.2527   Mean   :-0.2528   Mean   :-0.2529   Mean   :-0.2529  
#>  3rd Qu.: 0.4179   3rd Qu.: 0.4178   3rd Qu.: 0.4177   3rd Qu.: 0.4177  
#>  Max.   : 2.3807   Max.   : 2.3807   Max.   : 2.3807   Max.   : 2.3806  
#>    2120950.89        5428675.44       13894954.94       35564803.06     
#>  Min.   :-3.0094   Min.   :-3.0094   Min.   :-3.0094   Min.   :-3.0094  
#>  1st Qu.:-0.8794   1st Qu.:-0.8794   1st Qu.:-0.8794   1st Qu.:-0.8794  
#>  Median :-0.1388   Median :-0.1388   Median :-0.1388   Median :-0.1388  
#>  Mean   :-0.2529   Mean   :-0.2529   Mean   :-0.2529   Mean   :-0.2529  
#>  3rd Qu.: 0.4177   3rd Qu.: 0.4177   3rd Qu.: 0.4177   3rd Qu.: 0.4177  
#>  Max.   : 2.3806   Max.   : 2.3806   Max.   : 2.3806   Max.   : 2.3806  
#>    91029817.8       232995181.05      596362331.66     1526417967.18    
#>  Min.   :-3.0094   Min.   :-3.0094   Min.   :-3.0094   Min.   :-3.0094  
#>  1st Qu.:-0.8794   1st Qu.:-0.8794   1st Qu.:-0.8794   1st Qu.:-0.8794  
#>  Median :-0.1388   Median :-0.1388   Median :-0.1388   Median :-0.1388  
#>  Mean   :-0.2529   Mean   :-0.2529   Mean   :-0.2529   Mean   :-0.2529  
#>  3rd Qu.: 0.4177   3rd Qu.: 0.4177   3rd Qu.: 0.4177   3rd Qu.: 0.4177  
#>  Max.   : 2.3806   Max.   : 2.3806   Max.   : 2.3806   Max.   : 2.3806  
#>  3906939937.05         1e+10        
#>  Min.   :-3.0094   Min.   :-3.0094  
#>  1st Qu.:-0.8794   1st Qu.:-0.8794  
#>  Median :-0.1388   Median :-0.1388  
#>  Mean   :-0.2529   Mean   :-0.2529  
#>  3rd Qu.: 0.4177   3rd Qu.: 0.4177  
#>  Max.   : 2.3806   Max.   : 2.3806  
boxplot(df[, c(1, 10, 25, 35, 50)], 
main = "distribution of in sample bias", 
xlab = "lambda", ylab = "y_hat - y")